Robust principal component analysis-based four-dimensional computed tomography.

نویسندگان

  • Hao Gao
  • Jian-Feng Cai
  • Zuowei Shen
  • Hongkai Zhao
چکیده

The purpose of this paper for four-dimensional (4D) computed tomography (CT) is threefold. (1) A new spatiotemporal model is presented from the matrix perspective with the row dimension in space and the column dimension in time, namely the robust PCA (principal component analysis)-based 4D CT model. That is, instead of viewing the 4D object as a temporal collection of three-dimensional (3D) images and looking for local coherence in time or space independently, we perceive it as a mixture of low-rank matrix and sparse matrix to explore the maximum temporal coherence of the spatial structure among phases. Here the low-rank matrix corresponds to the 'background' or reference state, which is stationary over time or similar in structure; the sparse matrix stands for the 'motion' or time-varying component, e.g., heart motion in cardiac imaging, which is often either approximately sparse itself or can be sparsified in the proper basis. Besides 4D CT, this robust PCA-based 4D CT model should be applicable in other imaging problems for motion reduction or/and change detection with the least amount of data, such as multi-energy CT, cardiac MRI, and hyperspectral imaging. (2) A dynamic strategy for data acquisition, i.e. a temporally spiral scheme, is proposed that can potentially maintain similar reconstruction accuracy with far fewer projections of the data. The key point of this dynamic scheme is to reduce the total number of measurements, and hence the radiation dose, by acquiring complementary data in different phases while reducing redundant measurements of the common background structure. (3) An accurate, efficient, yet simple-to-implement algorithm based on the split Bregman method is developed for solving the model problem with sparse representation in tight frames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust principle component analysis based four-dimensional computed tomography

The purpose of this article for four-dimensional (4D) computed tomography (CT) is threefold. (1) A new spatiotemporal model is presented from matrix perspective with the row dimension in space and the column dimension in time, namely, Robust PCA based 4DCT model (Robust Principle Component Analysis based 4D CT). That is, instead of viewing the 4D object as a temporal collection of three-dimensi...

متن کامل

Classification Accuracy of Multivariate Analysis Applied to Tc-ECD SPECT Data in Alzheimer’s Disease Patients and Asymptomatic Controls

With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer’s disease (AD) patients and asymptomatic controls. In this work, the feas...

متن کامل

An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case

Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...

متن کامل

Detection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging

Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging  yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...

متن کامل

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 56 11  شماره 

صفحات  -

تاریخ انتشار 2011